Equation of the Form: a cosθ + b sinθ = c
a cosθ + b sinθ = c where c2 ≤ a2 + b2
Divide each term by √(a2 + b2)
cosθ cosα + sinθ sinα = cosβ
cos (θ − α) = cosβ
θ − α = 2nπ ± β
θ = 2nπ + α ± β, n ∈ Z
a cosθ + b sinθ = c where c2 ≤ a2 + b2
Divide each term by √(a2 + b2)
cosθ cosα + sinθ sinα = cosβ
cos (θ − α) = cosβ
θ − α = 2nπ ± β
θ = 2nπ + α ± β, n ∈ Z