T-Ratios of Related Angles
T-Ratios of (90° − θ)
sin (90° − θ) = cos θ
cos (90° − θ) = sin θ
tan (90° − θ) = = cot θ
cosec (90° − θ) = sec θ
sec (90° − θ) = cosec θ
cot (90° − θ) = tan θ
T-Ratios of (90° + θ)
sin (90° + θ) = cos θ
cos (90° + θ) = −sin θ
tan (90° + θ) = −cot θ
cosec (90° + θ) = sec θ
sec (90° + θ) = −cosec θ
cot (90° + θ) = −tan θ
T-Ratios of (180° − θ)
sin (180° − θ) = sin θ
cos (180° − θ) = −cos θ
tan (180° − θ) = −tan θ
cosec (180° − θ) = cosec θ
sec (180° − θ) = −sec θ
cot (180° − θ) = −cot θ
T-Ratios of (180° + θ)
sin (180° + θ) = −sin θ
cos (180° + θ) = −cos θ
tan (180° + θ) = tan θ
cosec (180° + θ) = −cosec θ
sec (180° + θ) = −sec θ
cot (180° + θ) = cot θ
Since 360° corresponds to one full revolution, sine of the angles 360°+45°; 720°+45°; 1080°+45° are equal to sine of 45°. This is so for the other trigonometric ratios. When an angle exceeds 360°, it can be reduced to an angle between 0° and 360° by wiping out integral multiples of 360°.