Electric Charges
The ancient Greeks observed electric and magnetic phenomena as early as 600 B.C. They found that a piece of amber, when rubbed, becomes electrified and attracts small pieces of feathers. The word electric comes from Greek word for amber meaning electron.
Properties of Charges
- There are only two kinds of charges in nature: positive and negative.
- Charge is conserved.
- Charge is quantized.
Conservation of Charge
When a glass rod is rubbed with silk, the rod acquires positive charge and silk acquires negative charge. Since both materials in the normal state are neutral (no charge), the positive charge on the glass rod should be equal in magnitude to the negative charge on silk. This means that the total charge of the system (glass + silk) is conserved. It is neither created nor destroyed. It is only transferred from one body of the system to the other.
The transfer of charges takes place due to increase in the thermal energy of the system when the glass rod is rubbed; the less tightly bound electrons from the glass rod are transferred to silk. The glass rod (deficient in electrons) becomes positively charged and silk, which now has excess electrons, becomes negatively charged. When rubber is rubbed with fur, electrons from the fur are transferred to rubber. That is, rubber gains negative charge and fur gains an equal amount of positive charge.
Quantization of Charge
In 1909, Millikan experimentally proved that charge always occurs as some integral multiple of a fundamental unit of charge, which is taken as the charge on an electron. This means that if Q is the charge on an object, it can be written as Q = Ne, where N is an integer and e is charge on an electron.